

 COMPUTER SCIENCE

Year 13

What are the aims and intentions of this curriculum?

The aims of the year 13 curriculum map are to enable learners to develop:

• An understanding and ability to apply the fundamental principles and concepts of computer science, including: abstraction, decomposition, logic, algorithms and data
representation

• The ability to analyse problems in computational terms through practical experience of solving such problems, including writing programs to do so.

• The capacity to think creatively, innovatively, analytically, logically and critically

• The capacity to see relationships between different aspects of computer science

• Mathematical skills.

Term Topics Knowledge and key terms Skills developed Assessment

Autumn 1 2.2 Problem solving and
programming

2.2.2 Computational
methods

1.2 Software and
software development

1.2.4 Types of
Programming
Language

(a) Features that make a problem solvable by
computational methods.
(b) Problem recognition. (c) Problem decomposition.
(d) Use of divide and conquer.
(e) Use of abstraction.
(f) Learners should apply their knowledge of:

✓ Backtracking
✓ data mining
✓ heuristics
✓ performance modelling
✓ pipelining
✓ visualisation to solve problems.

(a) Need for and characteristics of a variety of
programming paradigms.
(b) Procedural languages.
(c) Assembly language (including following and writing
simple programs with the Little Man Computer
instruction set). See appendix 5d.
(d) Modes of addressing memory (immediate, direct,
indirect and indexed).

• Know how quicksort use the so-called
divide and conquer strategy

• Define backtracking, data mining, and
heuristics.

• Identify a list of real-life (non-computing)
applications of backtracking.

• Know which computational problems can
assist through visualization.

• Plotting responses for visual correlation.

undertake and use a range of assessments to
confirm medium and longer term goals and
update career and learning targets.

• Give a comparison of various programming
languages after actual use.

• Use, understand and know how the
following statement types can be
combined in programs:

• variable declaration

• constant declaration

• assignment

• Individual
presentations

• Group
Presentations

• Case Studies

• Reviews

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

• Research

• Quizlet

2.2 Problem solving and
programming cont’d

2.2.1 Programming
techniques

1.1 The characteristics of
contemporary
processors, input, output
and storage devices

1.1.1 Structure and
function of the
processor

(e) Object-oriented languages (see appendix 5d for
pseudocode style) with an understanding of classes,
objects, methods, attributes, inheritance,
encapsulation and polymorphism.

How computers can be used to solve problems and
programs can be written to solve them (Learners will
benefit from being able to program in a
procedure/imperative language and object oriented
language.)

(a) Programming constructs: sequence, iteration,
branching.
(b) Recursion, how it can be used and compares to an
iterative approach.
(c) Global and local variables.
(d) Modularity, functions and procedures, parameter
passing by value and reference. (e) Use of an IDE to
develop/debug a program.
(f) Use of object oriented techniques.

(a) The Arithmetic and Logic Unit; ALU, Control Unit
and Registers (Program Counter; PC, Accumulator;
ACC, Memory Address Register; MAR, Memory Data
Register; MDR, Current Instruction Register; CIR).
Buses: data, address and control: how this relates to
assembly language programs.
(b) The fetch-decode-execute cycle, including its
effect on registers.
(c) The factors affecting the performance of the
CPU; clock speed, number of cores, cache.

• string handling

• file handling

• subroutine (procedure/function)

• Identify and use mnemonics from LMC

• Write simple programs using Little Man
Computing

seek redress if their consent has not been
respected; how to recognise and seek help in the
case of sexual exploitation, assault or rape.

• Be able to express the solution to a simple
problem as an algorithm using pseudo-
code, with the standard constructs:
✓ sequence
✓ branching
✓ iteration

• Create flowcharts to identify and
represent the various elements of a
system.

• Know that branching effectively replaces
iteration.

• Develop iterative solutions.

• Develop recursive solutions.

recognise mental health issues in others; be able to
offer or find support for those experiencing
difficulties with their mental health.

• Know how parts of the CPU interact and
function to process instructions and
‘compute’.

• Evaluate the development of computer
technology and the effects it has had.

• Understand and explain the Fetch-Execute
cycle.

• Individual
presentations

• Group
Presentations

• Case Studies

• Reviews

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

• Demonstrations

1.1.2 Types of processor

1.1.3 Input, output and
storage

1.2 Software and
software development
cont’d

1.2.1 Systems
Software

(d) The use of pipelining in a processor to improve
efficiency.
(d) Von Neumann, Harvard and contemporary
processor architecture.

(a) The differences between and uses of CISC and
RISC processors.
(b) GPUs and their uses (including those not related
to graphics).
(c) Multicore and Parallel systems.

a) How different input, output and storage devices
can be applied to the solution of different
problems.
(b) The uses of magnetic, flash and optical storage
devices.
(c) RAM and ROM.
(d) Virtual storage.

Types of software and the different methodologies
used to develop software

(a) The need for, function and purpose of operating
systems.
(b) Memory Management (paging, segmentation and
virtual memory).
(c) Interrupts, the role of interrupts and Interrupt
Service Routines (ISR), role within the Fetch-Decode-
Execute Cycle.
(d) Scheduling: round robin, first come first served,
multi-level feedback queues, shortest job first and
shortest remaining time.

• Compare several PROCESSOR
specifications and professional reviews of
the performance of the CPU.

• Discuss the use of pipelining in a
processor.

• Compare the Von Neumann and Harvard
CPU architecture.

• Compare and contrast a range of CPU
benchmarks or look for a specific model.

• Analyse the suitability of the GPU for a
range of tasks other than playing video
games.

• Tell the difference between serial and
parallel processing of instructions.

• Revise key terms and learn definitions of
input and output devices.

• Discuss optical and magnetic storage
properties

• Justify where each type of storage is used
and its suitability.

• Discuss the concept of: a slow computer
requires more RAM, so why not just
download some more? Learners can
discuss the issues or reality of this is RAM
downloadable? Would it work?

• Compare the advantages and
disadvantages of virtual storage

obtain careers information relevant to
needs and process it effectively.

• Understanding the need for and function
of operating systems.

• Know that the OS handles interrupts,
scheduling, resource management,
managing hardware to allocate processors,
memories and I/O devices among
competing processes.

• Individual
presentations

• Group
Presentations

• Case Studies

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

1.3 Exchanging data

1.3.1 Compression,
Encryption and
Hashing

1.4.1 Data Types

1.4.2 Data Structures

(e) Distributed, embedded, multi-tasking, multi-user
and real time operating systems.
(f) BIOS.
(g) Device drivers.
(h) Virtual machines, any instance where software is
used to take on the function of a machine, including
executing intermediate code or running an operating
system within another.

How data is exchanged between different systems

(a) Lossy vs Lossless compression.
(b) Run length encoding and dictionary coding for
lossless compression.
(c) Symmetric and asymmetric encryption.
(d) Different uses of hashing.

(a) Primitive data types, integer, real/floating point,
character, string and Boolean.
(b) Represent positive integers in binary.
(c) Use of sign and magnitude and two’s complement
to represent negative numbers in binary.
(d) Addition and subtraction of binary integers.
(e) Represent positive integers in hexadecimal.
(f) Convert positive integers between binary
hexadecimal and denary.
(g) Representation and normalisation of floating point
numbers in binary.
(h) Floating point arithmetic, positive and negative
numbers, addition and subtraction.
(i) Bitwise manipulation and masks: shifts, combining
with AND, OR, and XOR.
 (j) How character sets (ASCII and UNICODE) are used
to represent text.

a) Arrays (of up to 3 dimensions), records, lists,
tuples.

• Understand the term 'embedded system'
and explain how an embedded system
differs from a Distributed system.

• Know the instance where software is used
to take on the function of a machine
including executing intermediate code or
running an operating system within
another.

• Discuss why certain operating systems are
used.

• Justify reasons for using virtual machines.

• Demonstrate the difference between lossy
and lossless audio compression.

• Investigate the difference between the HD
and SD quality on YouTube.

• Use hashing principles in python.

• Understand the concept of a data type.

• Create their own examples of the listed
data types.

• Know how to:

• represent negative and positive integers in
two’s complement

• perform subtraction using two’s
complement

• Be able to convert between unsigned
binary and decimal and vice versa.

• Be able to add and subtract binary as well
as to convert between decimal, binary and
hexadecimal number bases.

• Manipulate binary by using bitwise and
shifting.

• Describe ASCII and Unicode coding
systems for coding character data and
explain why Unicode was introduced.

• Use arrays in the design of solutions to
simple problems.

• Use stocks, queues, tree and hash table to
structure data.

(b) The following structures to store data: linked-list,
graph (directed and undirected), stack, queue, tree,
binary search tree, hash table.
(c) How to create, traverse, add data to and remove
data from the data structures mentioned above. (NB
this can be either using arrays and procedural
programming or an object-oriented approach).

recognise how pressure to conform to media
stereotypes (or manipulated images) can adversely
affect body image and the impact this can have on
self-esteem; develop strategies to manage this
pressure.

Autumn 2 1.2.2 Applications
generation

1.2.3 Software
Development

1.3.1 Databases

(a) The nature of applications, justifying suitable
applications for a specific purpose.
(b) Utilities.
(c) Open source vs closed source.
(d) Translators: Interpreters, compilers and
assemblers.
(e) Stages of compilation (lexical analysis, syntax
analysis, code generation and optimisation).
(f) Linkers and loaders and use of libraries.

(a) Understand the waterfall lifecycle, agile
methodologies, extreme programming, the spiral
model and rapid application development.
(b) The relative merits and drawbacks of different
methodologies and when they might be used.
(c) Writing and following algorithms.

How data is exchanged between different systems
(a) Relational database, flat file, primary key, foreign
key, secondary key, entity relationship modelling. See
appendix 5f.
(b) Methods of capturing, selecting, managing and
exchanging data.
(c) Normalisation to 3NF.
(d) SQL – Interpret and modify. See appendix 5d.
(e) Referential integrity.
(f) Transaction processing, ACID (Atomicity,
Consistency, Isolation, Durability), record locking and
redundancy.

• Understand the functions of the following
software:
✓ open source
✓ closed source
✓ utility programs
✓ libraries
✓ translators (compiler, assembler,

interpreter).

• Identify and explain each state of compilation.

• Explain linkers and loaders and how libraries
are used.

• Apply the structure of the waterfall lifecycle in
software development.

• Discuss relevant software development
methodologies including their advantages and
disadvantages.

• Distinguish between database keys.

• Draw entity relationship diagrams to express a
given situation.

• Describe different types of normalization.

• Write SQL codes

• Know how transactions are completed using
ACID.

describe different routes through to their career
goals, and the similarities and differences
between higher education and employment with
training.

• Group
Presentations

• Case Studies

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

• Demonstrations

1.3.2 Networks

1.3.4 Web Technologies

1.4.3 Boolean Algebra

2.1 Elements of
computational thinking

2.1.1 Thinking
abstractly

(a) Characteristics of networks and the importance of
protocols and standards.
(b) Internet structure:

✓ The TCP/IP stack.
✓ DNS
✓ Protocol layering.
✓ LANs and WANs.
✓ Packet and circuit switching.

(c) Network security and threats, use of firewalls,
proxies and encryption.
(d) Network hardware.
(c) Client-server and peer to peer.

(a) HTML, CSS and JavaScript. See appendix 5d.
(b) Search engine indexing.
(c) PageRank algorithm.
(d) Server and client side processing.

(a) Define problems using Boolean logic. See appendix
5d.
(b) Manipulate Boolean expressions, including the use
of Karnaugh maps to simplify Boolean expressions.
(c) Use the following rules to derive or simplify
statements in Boolean algebra: De Morgan’s Laws,
distribution, association, commutation, double
negation.
(d) Use logic gate diagrams and truth tables. See
appendix 5d.
(e) The logic associated with D type flip flops, half and
full adders.

Understand what is meant by computational
thinking

(a) The nature of abstraction.

• Appreciate the importance of protocols and
standards.

• Describe the 4 layer TCP/IP model:
✓ application layer
✓ transport layer
✓ internet layer
✓ link layer.

• Evaluate different network security measures.

• Identify different network hardware and
explain their purpose.

• Explain the following and describe situations
where they might be used:
✓ peer-to-peer networking
✓ client-server networking.

• Be able to build webpages with the
implementation of CSS and JavaScript.

• Demonstrate how search engines work.

• Know how pages are ranked.

• Write a Boolean expression for a given logic
gate circuit.

• Use Karnaugh maps appropriately.

• Complete a truth table for a given logic gate
circuit.

• Construct truth tables for the following logic
gates:

• NOT

• AND

• OR

• Know the logic associated with D type flip
flops, half and full adders.

• Be aware that before a problem can be solved,
it must be defined, the requirements of the
system that solves the problem must be
established

• Individual
presentations

• Group
Presentations

• Case Studies

• Reviews

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

• Dramatization

2.1.2 Thinking
ahead

2.1.3 Thinking
procedurally

2.1.4 Thinking
logically

2.1.5 Thinking
concurrently

(b) The need for abstraction. (c) The differences
between an abstraction and reality. (d) Devise an
abstract model for a variety of situations.

(a) Identify the inputs and outputs for a given
situation.
(b) Determine the preconditions for devising a
solution to a problem.
(c) The nature, benefits and drawbacks of caching.
(d) The need for reusable program components.

(a) Identify the components of a problem.
(b) Identify the components of a solution to a
problem. (c) Determine the order of the steps needed
to solve a problem.
(d) Identify sub-procedures necessary to solve a
problem.

(a) Identify the points in a solution where a decision
has to be taken.
(b) Determine the logical conditions that affect the
outcome of a decision.
(c) Determine how decisions affect flow through a
program.

(a) Determine the parts of a problem that can be
tackled at the same time.
(b) Outline the benefits and trade offs that might
result from concurrent processing in a particular
situation.

• The capacity to think creatively, innovatively,
analytically, logically and critically

• Know the impact of caching in relation to a
programming solution or IT system.

• Practical skills in the context of solving a
realistic problem

H19. manage personal safety off-line, including
when socialising (including meeting someone in
person for the first time whom they met online,
drink spiking, looking out for friends) and travelling
(especially cycle safety, young driver safety, and
passenger safety, including the risks of being a
passenger with an intoxicated driver, and using only
licenced taxis).

• Know how to get from a problem to a solution

for computational problems.

• Outline the benefits and trade offs that might
result from concurrent processing in a particular
situation.

Justify and evaluate the range of opportunities they
are considering including HE, training, employment
or starting their own business.

Spring 1 1.5 Legal, moral, ethical
and cultural issues

1.5.1 Computing
related legislation

The individual moral, social, ethical and cultural
opportunities and risks of digital technology.
Legislation surrounding the use of computers and
ethical issues that can or may in the future arise from
the use of computers.

(a) The Data Protection Act 1998.
(b) The Computer Misuse Act 1990.
(c) The Copyright Design and Patents Act 1988.
(d) The Regulation of Investigatory Powers Act 2000.

R10. appreciate the ways different cultures and
faiths view relationships, respecting others’ right to
hold their own views.

R21. recognise forced marriage and ‘honour’ based
violence; get help for themselves or others they
believe to be at immediate or future risk.

• An understanding of the consequences of using
computers unlawfully.

• Group
Presentations

• Case Studies

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

1.5.2 Ethical, moral
and cultural issues

2.3 Algorithms

2.3.1 Algorithms

Non exam assessment
PROGRAMMING
PROJECT
(begins Autumn 1)

(a) The individual moral, social, ethical and cultural
opportunities and risks of digital technology:

✓ Computers in the workforce.
✓ Automated decision making.
✓ Artificial intelligence.
✓ Environmental effects.
✓ Censorship and the Internet.
✓ Monitor behaviour.
✓ Analyse personal information.
✓ Piracy and offensive communications.
✓ Layout, colour paradigms and character sets.

The use of algorithms to describe problems and
standard algorithms
(a) Analysis and design of algorithms for a given
situation.
(b) The suitability of different algorithms for a given
task and data set, in terms of execution time and
space.
(c) Measures and methods to determine the
efficiency of different algorithms, Big O notation
(constant, linear, polynomial, exponential and
logarithmic complexity).
(d) Comparison of the complexity of algorithms.
(e) Algorithms for the main data structures, (stacks,
queues, trees, linked lists, depth-first (post-order) and
breadth-first traversal of trees).
(f) Standard algorithms (bubble sort, insertion sort,
merge sort, quick sort, Dijkstra’s shortest path
algorithm, A* algorithm, binary search and linear
search).

• Understand the professional, ethical, legal,
security and social issues and responsibilities

• Understand that:
✓ developments in computer science and the

digital technologies have dramatically
altered the shape of communications and
information flows in societies, enabling
massive transformations in the capacity to:
o monitor behaviour
o amass and analyse personal

information
o distribute, publish, communicate and

disseminate personal information.

• Be able to convert an algorithm from pseudo-
code into high level language program code.

• Be able to develop solutions to simple logic
problems.

• Know when and how to use different algorithm
sorting and searching methods.

• Comparing suitability of different algorithms
for a given task and data set.

• Know and use different measures and methods
to determine the efficiency of different
algorithms

• Explain and use Dijkstra’s shortest path
algorithm.

R2. accept and use positive encouragement and
constructive feedback.

• Topic Worksheets

• Past Paper question
sheets

• Group
Presentations

• Case Studies

• End of topic quiz

• End of term test

• Microsoft Teams
collaborative
activities.

• Home work

• Class Discussions

• Topic Worksheets

• Past Paper question
sheets

• Programming
project

3.1. Analysis of the
problem (10 marks)

3.1.1 Problem
identification

3.1.2 Stakeholders

3.1.3 Research the
problem

3.1.4 Specify the
proposed solution

3.2 Design of the solution
(15 marks)

3.2.1 Decompose the
problem

3.2.2 Describe the
solution

3.2.3 Describe the
approach to testing

(a) Describe and justify the features that make the
problem solvable by computational methods.
(b) Explain why the problem is amenable to a
computational approach.

(a) Identify and describe those who will have an
interest in the solution explaining how the solution is
appropriate to their needs (this may be named
individuals, groups or persona that describes the
target end user).

(a) Research the problem and solutions to similar
problems to identify and justify suitable approaches to
a solution. (b) Describe the essential features of a
computational solution explaining these choices.
(c) Explain the limitations of the proposed solution.

(a) Specify and justify the solution requirements
including hardware and software configuration (if
appropriate). (b) Identify and justify measurable
success criteria for the proposed solution.

(a) Break down the problem into smaller parts
suitable for computational solutions justifying any
decisions made.

(a) Explain and justify the structure of the solution.
(b) Describe the parts of the solution using algorithms
justifying how these algorithms form a complete
solution to the problem. (c) Describe usability features
to be included in the solution.
(d) Identify key variables / data structures / classes
justifying choices and any necessary validation.

(a) Identify the test data to be used during the
iterative development and post development phases
and justify the choice of this test data.

• Choose a problem from the list given by OCR
and analyse this problem to determine; the
stakeholders, the need for a solution and the
necessary requirements including hardware
software.

consider the possible implications of changes in
learning and work for their own career goals and
plans including financial options.

• Use appropriate software to design the user
interface for the chosen project.

• Students should be able to design and apply
test data, normal, boundary and erroneous to
the testing of programs so that they are
familiar with these test data types and the
purpose of testing.

• Seminars

• Programming
project

• Past programming
project analysis and
comparison

• Individual
presentation

• Case Studies

• Programming
Project

• Class Discussions

• Research

• Past project sample
review

Spring 2 3.4 Evaluation (20 marks)

3.4.1 Testing to
inform evaluation

3.4.2 Success of the
solution

3.4.3 Describe the
final product

3.4.4 Maintenance
and development

(a) Provide annotated evidence of testing the solution
of robustness at the end of the development process.
(b) Provide annotated evidence of usability testing
(user feedback).

(a) Use the test evidence from the development and
post development process to evaluate the solution
against the success criteria from the analysis.

(a) Provide annotated evidence of the usability
features from the design, commenting on their
effectiveness.

(a) Discuss the maintainability of the solution.
(b) Discuss potential further development of the
solution.

• Evaluate their project’s solution to determine
its success.

• Critically discuss the maintainability of the
solution and further development.

• Individual
presentation

• Case Studies

• Project

• Class Discussions

• Research

• Past project
samples

Summer 1 Revision
External Exams

• Past paper questions

• Discussions

• One-to-one tutoring

